
State Machine Coding Styles for Synthesis

Clifford E. Cummings

Sunburst Design, Inc.

ABSTRACT

This paper details efficient Verilog coding styles to infer synthesizable state machines. HDL
considerations such as advantages and disadvantages of one-always block FSMs Vs. two-always
block FSMs are described.

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

2

Introduction

Steve Golson's 1994 paper, "State Machine Design Techniques for Verilog and VHDL" [1], is a
great paper on state machine design using Verilog, VHDL and Synopsys tools. Steve's paper also
offers in-depth background concerning the origin of specific state machine types.

This paper, "State Machine Coding Styles for Synthesis," details additional insights into state
machine design including coding style approaches and a few additional tricks.

State Machine Classification

There are two types of state machines as classified by the types of outputs generated from each.
The first is the Moore State Machine where the outputs are only a function of the present state,
the second is the Mealy State Machine where one or more of the outputs are a function of the
present state and one or more of the inputs.

Figure 1 - FSM Block Diagram

In addition to classifying state machines by their respective output-generation type, state
machines are also often classified by the state encoding employed by each state machine. Some
of the more common state encoding styles include [1] [2] [3]: highly-encoded binary (or binary-
sequential), gray-code, Johnson, one-hot, almost one-hot and one-hot with zero-idle (note: in the
absence of a known official designation for the last encoding-style listed, the author selected the
"one-hot with zero-idle" title. A more generally accepted name may exist).

Using the Moore FSM state diagram shown in Figure 2, this paper will detail synthesizable
Verilog coding styles for highly-encoded binary, one-hot and one-hot with zero-idle state
machines. This paper also details usage of the Synopsys FSM Tool to generate binary, gray and
one-hot state machines. Coded examples of the three coding styles for the state machine in Figure

Present
State
FF’s

Next
State
Logic

Output
Logic

next

state

clock

inputs

outputs

combinational
logic

combinational
logic

sequential
logic

state

(Mealy State Machine Only)

xli2
下划线

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

3

2, plus an example with the correct Synopsys FSM Tool comments, have been included at the
end of this paper.

Figure 2 - Benchmark 1 (bm1) State Diagram

FSM Verilog Modules

Guideline: make each state machine a separate Verilog module.

Keeping each state machine separate from other synthesized logic simplifies the tasks of state
machine definition, modification and debug. There are also a number of EDA tools that assist in
the design and documentation of FSMs, but in general they only work well if the FSM is not
mingled with other logic-code.

State Assignments

Guideline: make state assignments using parameters with symbolic state names.

Defining and using symbolic state names makes the Verilog code more readable and eases the
task of redefining states if necessary. Examples 1-3 show binary, one-hot and one-hot with zero-
idle parameter definitions for the FSM state diagram in Figure 2.

n_o1 = 1
o2 = 0
o3 = 0
o4 = 0
err = 0

i1 * i2

 __
i1 * i2 * i3

i2 * i3

 __
i2 * i3 * i4

__
i3 * i4

__ __
i3 * i4

__
i1

 __ __
i2 * i3 * i4

 __ __
i1 * i2 * i3

n_o1 = 1
o2 = 0
o3 = 0
o4 = 0
err = 1

n_o1 = 1
o2 = 0
o3 = 0
o4 = 1
err = 0

n_o1 = 1
o2 = 1
o3 = 1
o4 = 0
err = 0

n_o1 = 0
o2 = 1
o3 = 0
o4 = 0
err = 0

nrst__

i1

IDLEIDLE

i1
ERROR

 __
i1 * i2

S3

i3

S2

__
 i2

S1

i1 * i2

__
i1

xli2
下划线

xli2
下划线

xli2
下划线

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

4

parameter [2:0] // synopsys enum code
 IDLE = 3'd0,
 S1 = 3'd1,
 S2 = 3'd2,
 S3 = 3'd3,
 ERROR = 3'd4;

Example 1 - Parameter definitions for binary encoding

parameter [4:0] IDLE = 5'b00001,
 S1 = 5'b00010,
 S2 = 5'b00100,
 S3 = 5'b01000,
 ERROR = 5'b10000;

Example 2 - Parameter definitions for verbose one-hot encoding

parameter [4:0] IDLE = 5'd0,
 S1 = 5'd1,
 S2 = 5'd2,
 S3 = 5'd3,
 ERROR = 5'd4;

Example 3 - Parameter definitions for simplified one-hot encoding

The simplified one-hot encoding shown Example 3 uses decimal numbers to index into the state
register. This technique permits comparison of single bits as opposed to comparing against the
entire state vector using the full state parameters shown in Example 2.

parameter [4:1] // ERROR is 4'b0000
 IDLE = 4'd1,
 S1 = 4'd2,
 S2 = 4'd3,
 S3 = 4'd4;

Example 4 - Parameter definitions for one-hot with zero-idle encoding

The one-hot with zero-idle encoding can yield very efficient FSMs for state machines that have
many interconnections with complex equations, including a large number of connections to one
particular state. Frequently, multiple transitions are made either to an IDLE state or to another
common state (such as the ERROR-state in this example).

One could also define symbolic state names using the macro-definition compiler directives
(`define), but `define creates a global definition (from the point where the definition is read in the
Verilog-code input stream). Unlike `define constants, parameters are constants local to the
module where they are declared, which allows a design to have multiple FSMs with duplicate
state names, such as IDLE or READ, each with a unique state encoding.

Occasionally, FSM code is written with parameter-defined state definitions, but subsequent code
still includes explicit binary state encodings elsewhere in the module. This defeats the purpose of
using symbolically labeled parameters. Only use the pre-defined parameter names for state
testing and next-state assignment.

Additional notes on experimenting with different state definitions using Synopsys generated
binary, gray and one-hot encodings are detailed in the section, "Synopsys FSM Tool."

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

5

Two-Always Block State Machine

A synthesizable state machine may be coded many ways. Two of the most common, easily
understood and efficient methods are two-always block and one-always block state machines.

The easiest method to understand and implement is the two-always block state machine with
output assignments included in either the combinational next-state always block or separate
continuous-assignment outputs. This method partitions the Verilog code into the major FSM
blocks shown in Figure 1: clocked present state logic, next state combinational logic and output
combinational logic.

Sequential Always Block

Guideline: only use Verilog nonblocking assignments in the sequential always block.

Guideline: only use Verilog nonblocking assignments in all always blocks used to generate
sequential logic.

For additional information concerning nonblocking assignments, see reference [4].

Verilog nonblocking assignments mimic the pipelined register behavior of actual hardware and
eliminate many potential Verilog race conditions. Many engineers make nonblocking
assignments using an intra-assignment timing delay (as shown in Example 5). There are two
good reasons and one bad reason for using intra-assignment timing delays with nonblocking
assignments.

Good reasons: (1) gives the appearance of a clk->q delay on a clocked register (as seen using a
waveform viewer); (2) helps avoid hold-time problems when driving most gate-level
models from an RTL model.

Bad reason: "we add delays because Verilog nonblocking assignments are broken!" - This is not
true.

When implementing either a binary encoded or a verbose one-hot encoded FSM, on reset the
state register will be assigned the IDLE state (or equivalent) (Example 5).

always @(posedge clk or posedge rst)
 if (rst) state <= #1 IDLE;
 else state <= #1 next;

Example 5 - Sequential always block for binary and verbose one-hot encoding

When implementing a simplified one-hot encoded FSM, on reset the state register will be
assigned all zeros followed immediately by reassigning the IDLE bit of the state register
(Example 6). Note, there are two nonblocking assignments assigning values to the same bit. This
is completely defined by the IEEE Verilog Standard [5] and in this case, the last nonblocking
assignment supercedes any previous nonblocking assignment (updating the IDLE bit of the state
register).

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

6

always @(posedge clk or posedge rst)
 if (rst) begin
 state <= 5'b0;
 state[IDLE] <= 1'b1;
 end
 else state <= next;

Example 6 - Sequential always block for simplified one-hot encoding

When implementing a one-hot with zero-idle encoded FSM, on reset the state register will be
assigned all zeros (Example 7).

always @(posedge clk or posedge rst)
 if (rst) state <= 4'b0;
 else state <= next;

Example 7 - Sequential always block one-hot with zero-idle encoding

Combinational Always Block

Guideline: only use Verilog blocking assignments in combinational always blocks.

Code a combinational always block to update the next state value. This always block is triggered
by a sensitivity list that is sensitive to the state register from the synchronous always block and
all of the inputs to the state machine.

Place a default next state assignment on the line immediately following the always block
sensitivity list. This default assignment is updated by next-state assignments inside the case
statement. There are three types of default next-state assignments that are commonly used: (1)
next is set to all x's, (2) next is set to a predetermined recovery state such as IDLE, or (3) next is
just set to the value of the state register.

By making a default next state assignment of x's, pre-synthesis simulation models will cause the
state machine outputs to go unknown if not all state transitions have been explicitly assigned in
the case statement. This is a useful technique to debug state machine designs, plus the x's will be
treated as "don't cares" by the synthesis tool.

Some designs require an assignment to a known state as opposed to assigning x's. Examples
include: satellite applications, medical applications, designs that use the FSM flip-flops as part of
a diagnostic scan chain and designs that are equivalence checked with formal verification tools.
Making a default next state assignment of either IDLE or all 0's typically satisfy these design
requirements and making the initial default assignment might be easier than coding all of the
explicit next-state transition assignments in the case statement.

Making the default next-state assignment equal to the present state is a coding style that has been
used by PLD designers for years.

xli2
下划线

xli2
下划线

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

7

Figure 3 - Next State Transitions

Next state assignments are efficiently updated from within a case statement.

always @(state or i1 or i2 or i3 or i4) begin
 next = 3'bx;
 case (state)
 IDLE: begin
 next = ERROR;
 if (!i1) next = IDLE;
 if (i1 & i2) next = S1;
 if (i1 & !i2 & i3) next = S2;
 end

 S1: ...

Example 8 - Next state assignments for binary and verbose one-hot encoding

** all other input
conditions

i1 * i2

 __
i1 * i2 * i3

i2 * i3

 __
i2 * i3 * i4

__
i3 * i4

**__
i1

**
**

nrst__

i1

IDLEIDLE

ERROR

S3

i3

S2

__
 i2

S1
**

__
i1

**

__
i1 * i2

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

8

always @(state or i1 or i2 or i3 or i4) begin
 next = 5'b0;
 case (1'b1) // synopsys full_case parallel_case
 state[IDLE]: begin
 if (!i1) next[IDLE] = 1'b1;
 else if (i2) next[S1] = 1'b1;
 else if (i3) next[S2] = 1'b1;
 else next[ERROR] = 1'b1;
 end
 state[S1]: ...

Example 9 - Next state assignments for simplified one-hot encoding

always @(state or i1 or i2 or i3 or i4) begin
 next = 4'b0;
 case (1'b1) // synopsys full_case parallel_case
 ~|state: begin // IDLE
 if (i1 & i2) next[S1] = 1'b1;
 if (i1 & !i2 & i3) next[S2] = 1'b1;
 if (i1 & !i2 & !i3) next[ERROR] = 1'b1;
 end
 state[S1]: ...

Example 10 - Next state assignments for simplified one-hot with zero-idle encoding

Figure 4 - State Diagram

Default outputs:
n_o1 = 1
o2 = 0
o3 = 0
o4 = 0
err = 0

i1 * i2

 __
i1 * i2 * i3

i2 * i3

 __
i2 * i3 * i4

__
i3 * i4

**

__
i1

**

nrst__

i1

IDLEIDLE

**
ERROR

err=1

 __
i1 * i2

S3
o4=1

i3

S2
o2=1
o3=1

__
 i2

S1
n_o1=0

o2=1

__
i1

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

9

FSM Output Generation

Code the output logic either as a separate block of continuous assignments or within the
combinational logic always block. If the output assignments are coded as part of the
combinational always block, output assignments could also be put into Verilog tasks with
meaningful names, as shown in Figure 5. The tasks are called from within each state in the case
statement.

Isolation of the output assignments makes changes to the output logic easy if modification is
required. It also helps to avoid the creation of additional unwanted latches by the synthesis tool.

When placing output assignments inside the combinational always block of a Two-Always Block
State Machine, make default output assignments at the top of the always block, then modify the
appropriate output assignments in the case statement.

Figure 5 - Task State Outputs

In general this method requires less coding than making all output assignments for each state
(case item) and highlights when outputs are supposed to change.

task drive_defaults
n_o1 = 1
o2 = 0
o3 = 0
o4 = 0
err = 0

task init_S1
n_o1 = 0
o2 = 1

task set_S2
o2 = 1
o3 = 1

task drive_S3
o4 = 1

task error_state
err = 1

** all other input
conditions

i1 * i2

 __
i1 * i2 * i3

i2 * i3

 __
i2 * i3 * i4

__
i3 * i4

**__
i1

**
**

nrst__

i1

IDLEIDLE

ERROR

S3

i3

S2

__
 i2

S1

drive_defaults

init_S1

error_state

set_S2drive_S3

**

__
i1

**

__
i1 * i2

xli2
下划线

xli2
下划线

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

10

Mealy and Registered Outputs

Mealy outputs are easily added to the Verilog code either by qualifying an output continuous
assignment:

assign rd_out = (state == READ) & !rd_strobe_n;

or by qualifying an output assignment in the combinational always block:

case (state)
...
READ: if (!rd_strobe_n) rd_out = 1'b1;

Registered outputs may be added to the Verilog code making assignments to an output using
nonblocking assignments in a sequential always block. The FSM can be coded as one sequential
always block or a second sequential always block can be added to the design.

One-Always Block State Machine

In general, the one-always block state machine is slightly more simulation-efficient than the two-
always block state machine since the inputs are only examined on clock changes; however, this
state machine can be more difficult to modify and debug.

When placing output assignments inside the always block of a one-always block state machine,
one must consider the following:

Placing output assignments inside of the always block will infer output flip-flops. It must also be
remembered that output assignments placed inside of the always block are "next output"
assignments which can be more error-prone to code.

Note: output assignments inside of a sequential always block cannot be Mealy outputs.

Full_case / parallel_case

A case statement is a "select-one-of-many" construct in both Verilog and VHDL. A case
statement is composed of the keyword, case, followed by a case expression that is compared to
subsequent case items. The case items are tested against the case expression, one by one, in
sequential order and when a match between the case expression and one of the case items is
detected, the corresponding actions executed, the rest of the case items are skipped and program
execution resumes with the first statement after the endcase statement.

case (case_expression (with 2n possible combinations))
 case_item1 : <action #1>;
 case_item2 : <action #2>;
 case_item3 : <action #3>;
 ...

xli2
矩形

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

11

 case_item2n-1: <action #2n-1>;
 case_item2n: <action #2n>;
 default: <default action>;
endcase

A full case statement is defined to be a case statement where every possible input pattern is
explicitly defined. A parallel case statement is defined to be a case statement with no overlapping
conditions in the case items.

VHDL case statements are required to be "full," which means that every possible case item shall
either be explicitly listed as a case item, or there must be an "others =>" clause after the last-
defined case item. In practice, almost all VHDL case statements utilizing non bit-type data types
include an "others =>" statement to cover the non-binary data patterns.

VHDL case statements are also required to be "parallel," which means that no case item shall
overlap any other in the list of case items.

Verilog case statements are not required to be either "full" or "parallel."

Adding "// synopsys full_case" to the end of a case statement (before any case items are declared)
informs the synthesis tool that all outputs from non-explicitly declared case items should be
treated as "don't-cares" for synthesis purposes.

Adding "// synopsys parallel_case" to the end of a case statement (before any case items are
declared) informs the synthesis tool that all case items should be tested individually, even if the
case items overlap.

Adding either or both "// synopsys full_case parallel_case" directives to the Verilog FSM source
code is generally beneficial when coding one-hot or one-hot with zero-idle FSMs. In these cases,
it is given that only one bit of the state vector is set and that all other bit-pattern combinations
should be treated as "don't cares." It is also given that there should be no overlap in the list of
case items.

Note that the usage of full_case parallel case may cause pre-synthesis design simulations to differ
from post-synthesis design simulations because these directives are effectively giving Synopsys
tools information about the design that was not included in the original Verilog model.

Adding full_case parallel_case to every case statement in a design is not recommended. The
practice can change the functionality of a design, and can also cause some binary encoded FSM
designs to actually get larger and slower.

Synopsys FSM Tool

The Synopsys FSM tool can be used to experiment with different state encodings styles, such as
binary, gray and one-hot codes. In order to use the FSM tool, the Verilog code must include
Synopsys synthetic comments, plus a few unusual Verilog code statements. The Synopsys FSM
tool is very strict about how these comments and code segments are ordered and it is very easy to
code this incorrectly for the FSM tool.

xli2
下划线

xli2
下划线

xli2
下划线

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

12

First, the parameter must include a range (very unusual Verilog coding style). If no range is
included in the parameter declaration, the error message "Declaration of enumeration type
requires range specification" will be reported.

Figure 6 - FSM Tool - parameter range

Second, numeric parameter definitions must be sized, otherwise the FSM tool interprets all
numbers as 32-bit numbers and reports an invalid encoding error.

Figure 7 - FSM Tool - sized numbers

module bm1_s (...

parameter [2:0] // synopsys enum code
 IDLE = 3'd0,
 S1 = 3'd1,
 S2 = 3'd2,
 S3 = 3'd3,
 ERROR = 3'd4;

// synopsys state_vector state
reg [2:0] // synopsys enum code
 state, next;

Error: Declaration of enumeration type requires range specification
near symbol ";" on line 12 in file bug2a.v

Error: Can't read 'verilog' file 'bug2a.v'.

module bug2a (...

 parameter // synopsys enum code
 IDLE = 3'd0,
 S1 = 3'd1,
 S2 = 3'd2,
 S3 = 3'd3,
 ERROR = 3'd4;

 // synopsys state_vector state
 reg [2:0] // synopsys enum code
 state, next;

Synopsys Error Correct!

module bug2b (...

parameter [2:0] // synopsys enum code
 IDLE = 0,
 S1 = 1,
 S2 = 2,
 S3 = 3,
 ERROR = 4;

// synopsys state_vector state
reg [2:0] // synopsys enum code
 state, next;

module bm1_s (...

parameter [2:0] // synopsys enum code
 IDLE = 3'd0,
 S1 = 3'd1,
 S2 = 3'd2,
 S3 = 3'd3,
 ERROR = 3'd4;

// synopsys state_vector state
reg [2:0] // synopsys enum code
 state, next;

Error: Encoding '00000000000000000000000000000000' for 'IDLE' is not valid.
Error: Can't read 'verilog' file 'bug2b.v'.

Synopsys Error

Correct!

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

13

Third, the required placement of the Synopsys synthetic comments is exactly as shown. The "//
synopsys enum <name>" must be placed after the parameter range declaration and before any of
the parameters are declared,

Figure 8 - FSM Tool - synopsys enum

a "/ synopsys state_vector <state_vector_name>" Synopsys comment must be placed
immediately before the state-reg declaration and the exact same "// synopsys enum <name>"
comment, used above, must be placed after the reg range declaration but before the state (and
next) declarations. "

Figure 9 - FSM Tool - synopsys state_vector

module module bug2c (...

// synopsys enum code
parameter [2:0] IDLE = 3'd0,
 S1 = 3'd1,
 S2 = 3'd2,
 S3 = 3'd3,
 ERROR = 3'd4;

// synopsys state_vector state
reg [2:0] // synopsys enum code
 state, next;

module bm1_s (...

parameter [2:0] // synopsys enum code
 IDLE = 3'd0,
 S1 = 3'd1,
 S2 = 3'd2,
 S3 = 3'd3,
 ERROR = 3'd4;

// synopsys state_vector state
reg [2:0] // synopsys enum code
 state, next;

Error: syntax error at or near token 'enum' (File: bug2c.v Line: 7)
Error: Can't read 'verilog' file 'bug2c.v'.

Synopsys Error
Correct!

module module bug2d (...

parameter [2:0] // synopsys enum code
 IDLE = 3'd0,
 S1 = 3'd1,
 S2 = 3'd2,
 S3 = 3'd3,
 ERROR = 3'd4;

reg [2:0] // synopsys state_vector state
 state, next; // synopsys enum code

module bm1_s (...

parameter [2:0] // synopsys enum code
 IDLE = 3'd0,
 S1 = 3'd1,
 S2 = 3'd2,
 S3 = 3'd3,
 ERROR = 3'd4;

// synopsys state_vector state
reg [2:0] // synopsys enum code
 state, next;

Error: syntax error at or near token 'state_vector' (File: bug2d.v Line: 14)
Error: Can't read 'verilog' file 'bug2d.v'.

Synopsys Error Correct!

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

14

Below are example dc_shell commands that are used to invoke the Synopsys FSM tools on a
state machine design.

(read the design)
compile
extract
set_fsm_encoding_style binary
compile
write -f db -hier -output "db/" + DESIGN + "_fsm_binary.db"
report_area > "rpt/" + DESIGN + "_fsm_binary.rpt"
create_clock -p 0 clk
report_timing >> "rpt/" + DESIGN + "_fsm_binary.rpt"

(read the design)
compile
extract
set_fsm_encoding_style gray
compile
write -f db -hier -output "db/" + DESIGN + "_fsm_gray.db"
report_area > "rpt/" + DESIGN + "_fsm_gray.rpt"
create_clock -p 0 clk
report_timing >> "rpt/" + DESIGN + "_fsm_gray.rpt"

(read the design)
compile
extract
set_fsm_encoding_style one_hot
compile
write -f db -hier -output "db/" + DESIGN + "_fsm_onehot.db"
report_area > "rpt/" + DESIGN + "_fsm_onehot.rpt"
create_clock -p 0 clk
report_timing >> "rpt/" + DESIGN + "_fsm_onehot.rpt"

Example 11 - FSM Tool - dc_shell script

Acknowledgements

I would like to thank both Mike McNamara of Silicon Sorcery and Steve Golson of Trilobyte
Systems for information and tips they have shared with me concerning Finite State Machine
design. For more information about coding State Machines in both Verilog and VHDL, I highly
recommend reading Steve's paper, "State Machine Design Techniques for Verilog and VHDL"
[1].

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

15

References

[1] S. Golson, "State Machine Design Techniques for Verilog and VHDL," Synopsys Journal of
High-Level Design, September 1994, pp. 1-48.

[2] Z. Kohavi, "Switching and Finite Automata Theory," McGraw-Hill Book Company, New
York, 1978, pp. 275-321.

[3] D.J. Smith, "HDL Chip Design," Doone Publications, Madison, Alabama, 1997, pp. 193-270.

[4] C.E. Cummings, "Verilog Nonblocking Assignments Demystified," International Verilog
HDL Conference Proceedings 1998.

[5] IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language, IEEE Computer Society, IEEE Std 1364-1995.

Author & Contact Information

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 19 years of ASIC, FPGA and system design experience and nine years of Verilog,
synthesis and methodology training experience.

Mr. Cummings, a member of the IEEE 1364 Verilog Standards Group (VSG) since 1994, chaired
the VSG Behavioral Task Force, which was charged with proposing enhancements to the Verilog
language. Mr. Cummings is also a member of the IEEE Verilog Synthesis Interoperability
Working Group.

Mr. Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

E-mail Address: cliffc@sunburst-design.com
This paper can be downloaded from the web site: www.sunburst-design.com/papers

(Data accurate as of September 7th, 2001)

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

16

module bm1_s (err, n_o1, o2, o3, o4,
 i1, i2, i3, i4, clk, rst);
 output err, n_o1, o2, o3, o4;
 input i1, i2, i3, i4, clk, rst;
 reg err, n_o1, o2, o3, o4;

 parameter [2:0] // synopsys enum code
 IDLE = 3'd0,
 S1 = 3'd1,
 S2 = 3'd2,
 S3 = 3'd3,
 ERROR = 3'd4;

 // synopsys state_vector state
 reg [2:0] // synopsys enum code
 state, next;

 always @(posedge clk or posedge rst)
 if (rst) state <= IDLE;
 else state <= next;

 always @(state or i1 or i2 or i3 or i4) begin
 next = 3'bx;
 err = 0; n_o1 = 1;
 o2 = 0; o3 = 0; o4 = 0;
 case (state)
 IDLE: begin
 next = ERROR;
 if (!i1) next = IDLE;
 if (i1 & i2) next = S1;
 if (i1 & !i2 & i3) next = S2;
 end

 S1: begin
 next = ERROR;
 if (!i2) next = S1;
 if (i2 & i3) next = S2;
 if (i2 & !i3 & i4) next = S3;
 n_o1 = 0;
 o2 = 1;
 end

 S2: begin
 next = ERROR;
 if (i3) next = S2;
 if (!i3 & i4) next = S3;
 o2 = 1;
 o3 = 1;
 end

 S3: begin
 next = S3;
 if (!i1) next = IDLE;
 if (i1 & i2) next = ERROR;
 o4 = 1;
 end

 ERROR: begin
 next = IDLE;
 if (i1) next = ERROR;
 err = 1;
 end
 endcase
 end
endmodule

Figure 10 - FSM Tool synthetic comments

Synopsys FSM Tool
synthetic comments

Synopsys FSM Tool
synthetic comment

Highly encoded state-
parameter definitions

Default assignment
followed by parallel if

statements

next = 2'bx (synthesis
"don't care" assignment)

Initial default output
assignments

Only update output
assignments that change

in each state

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

17

module bm1_1afp (err, n_o1, o2, o3, o4,

 i1, i2, i3, i4, clk, rst);
 output err, n_o1, o2, o3, o4;
 input i1, i2, i3, i4, clk, rst;
 reg err, n_o1, o2, o3, o4;

 parameter [4:0] IDLE = 5'b00001,
 S1 = 5'b00010,
 S2 = 5'b00100,
 S3 = 5'b01000,
 ERROR = 5'b10000;

 reg [4:0] state, next;

 always @(posedge clk or posedge rst)
 if (rst) state <= IDLE;
 else state <= next;

 always @(state or i1 or i2 or i3 or i4) begin
 next = 5'bx;
 err = 0; n_o1 = 1;
 o2 = 0; o3 = 0; o4 = 0;
 case (state) // synopsys full_case parallel_case
 IDLE: begin
 if (!i1) next = IDLE;
 else if (i2) next = S1;
 else if (i3) next = S2;
 else next = ERROR;
 end

 S1: begin
 if (!i2) next = S1;
 else if (i3) next = S2;
 else if (i4) next = S3;
 else next = ERROR;
 n_o1 = 0;
 o2 = 1;
 end

 S2: begin
 if (i3) next = S2;
 else if (i4) next = S3;
 else next = ERROR;
 o2 = 1;
 o3 = 1;
 end

 S3: begin
 if (!i1) next = IDLE;
 else if (i2) next = ERROR;
 else next = S3;
 o4 = 1;
 end

 ERROR: begin
 if (i1) next = ERROR;
 else next = IDLE;
 err = 1;
 end
 endcase
 end
endmodule

Figure 11 - Verbose one-hot FSM

Verbose one-hot state-
parameter definitions

If/else-if statements

next = 5'bx (synthesis
"don't care" assignment)

Initial default output
assignments

Only update output
assignments that change

in each state

Final else statements

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

18

module bm1_1fpt (err, n_o1, o2, o3, o4,
 i1, i2, i3, i4, clk, rst);
 output err, n_o1, o2, o3, o4;
 input i1, i2, i3, i4, clk, rst;
 reg err, n_o1, o2, o3, o4;

 parameter [4:0] IDLE = 5'd0,
 S1 = 5'd1,
 S2 = 5'd2,
 S3 = 5'd3,
 ERROR = 5'd4;

 reg [4:0] state, next;

 always @(posedge clk or posedge rst)
 if (rst) begin
 state <= 5'b0;
 state[IDLE] <= 1'b1;
 end
 else state <= next;

 always @(state or i1 or i2 or i3 or i4) begin
 next = 5'b0;
 drive_defaults;
 case (1'b1) // synopsys full_case parallel_case
 state[IDLE]: begin
 if (!i1) next[IDLE] = 1'b1;
 else if (i2) next[S1] = 1'b1;
 else if (i3) next[S2] = 1'b1;
 else next[ERROR] = 1'b1;
 end

 state[S1]: begin
 if (!i2) next[S1] = 1'b1;
 else if (i3) next[S2] = 1'b1;
 else if (i4) next[S3] = 1'b1;
 else next[ERROR] = 1'b1;
 init_S1;
 end

 state[S2]: begin
 if (i3) next[S2] = 1'b1;
 else if (i4) next[S3] = 1'b1;
 else next[ERROR] = 1'b1;
 set_S2;
 end

 state[S3]: begin
 if (!i1) next[IDLE] = 1'b1;
 else if (i2) next[ERROR] = 1'b1;
 else next[S3] = 1'b1;
 drive_S3;
 end

 state[ERROR]: begin
 if (i1) next[ERROR] = 1'b1;
 else next[IDLE] = 1'b1;
 error_state;
 end

 endcase
 end

 task drive_defaults;
 begin
 err = 0;
 n_o1 = 1;
 o2 = 0;
 o3 = 0;
 o4 = 0;
 end
 endtask

Figure 12 - Simplified one-hot FSM w/task outputs

On reset, state <= 5'b0
followed by state[IDLE] <= 1'b1

Simplified one-hot state-
parameter definitions

(to index into the state vector)

next is set to all 0's

Only set the "one-hot"
bit in the next register

Output task call

Synopsys full_case parallel_case
helps infer a more efficient one-

hot implementation

Case "if true" (1'b1) ...

... match a single state bit

Descriptive output task
names

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

19

 task init_S1;
 begin
 n_o1 = 0;
 o2 = 1;
 end
 endtask

 task set_S2;
 begin
 o2 = 1;
 o3 = 1;
 end
 endtask

 task drive_S3;
 o4 = 1;
 endtask

 task error_state;
 err = 1;
 endtask
endmodule

Figure 13 - Simplified one-hot FSM w/task outputs (cont.)

Descriptive output task
name

Descriptive output task
name

Descriptive output task
name

Descriptive output task
name

SNUG 1998 State Machine Coding Styles for Synthesis
Rev 1.1

20

module bm1o_0bfp (err, n_o1, o2, o3, o4,
 i1, i2, i3, i4, clk, rst);
 output err, n_o1, o2, o3, o4;
 input i1, i2, i3, i4, clk, rst;
 wire err, n_o1, o2, o3, o4;

 parameter [4:1] // ERROR
 IDLE = 4'd1,
 S1 = 4'd2,
 S2 = 4'd3,
 S3 = 4'd4;

 reg [4:1] state, next;

 always @(posedge clk or posedge rst)
 if (rst) begin

 state <= 4'b0;
 state[IDLE] <= 1'b1;
 end

 else state <= next;

 always @(state or i1 or i2 or i3 or i4) begin
 next = 4'b0;
 case (1'b1) // synopsys full_case parallel_case
 state[IDLE]: begin
 if (!i1) next[IDLE] = 1'b1;
 if (i1 & i2) next[S1] = 1'b1;
 if (i1 & !i2 & i3) next[S2] = 1'b1;
 end

 state[S1]: begin
 if (!i2) next[S1] = 1'b1;
 if (i2 & i3) next[S2] = 1'b1;
 if (i2 & !i3 & i4) next[S3] = 1'b1;
 end

 state[S2]: begin
 if (i3) next[S2] = 1'b1;
 if (!i3 & i4) next[S3] = 1'b1;
 end

 state[S3]: begin
 if (!i1) next[IDLE] = 1'b1;
 if (i1 & !i2) next[S3] = 1'b1;
 end

 ~|state: begin // ERROR
 if (!i1) next[IDLE] = 1'b1;
 end
 endcase
 end

 assign err = !(|state);
 assign n_o1 = !(state[S1]);
 assign o2 = ((state[S1]) || (state[S2]));
 assign o3 = (state[S2]);
 assign o4 = (state[S3]);
endmodule

Figure 14 - One-hot with zero-idle FSM

Other states are "one-hot" states

next is set to all 0's

Continuous output
assignments

Synopsys full_case parallel_case
helps infer a more efficient one-

hot implementation

Case "if true" (1'b1) ...

... match a single state bit

ERROR state was selected to be
the all 0's state

On reset, state <= 4'b0
followed by state[IDLE] <= 1'b1

Decode all 0's state
(must match case(1'b1))

