MIPI Alliance Standard for Display Bus Interface

v2.0

MIPI Board approved 16 November 2005

* Caution to Implementers *

This document is a MIPI Specification formally approved by the MIPI Alliance Board of Directors per the process defined in the MIPI Alliance Bylaws. This specification is currently incomplete because it references other MIPI specifications which are still under development. This specification may be revised when the referenced specifications are available. Notices will be sent to members when those referenced specifications are completed.
MIPI Alliance Standard for Display Bus Interface

Version 2.00 – 29 November 2005

MIPI Board Approved 16-Nov-2005

Further technical changes to DBI are expected as work continues in the Display Working Group
NOTICE OF DISCLAIMER

The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled by any of the authors or developers of this material or MIPI. The material contained herein is provided on an “AS IS” basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence.

ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT. IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT OR MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCUREMENT SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT, SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Without limiting the generality of this Disclaimer stated above, the user of the contents of this Document is further notified that MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the contents of this Document; (b) does not monitor or enforce compliance with the contents of this Document; and (c) does not certify, test, or in any manner investigate products or services or any claims of compliance with the contents of this Document. The use or implementation of the contents of this Document may involve or require the use of intellectual property rights (“IPR”) including (but not limited to) patents, patent applications, or copyrights owned by one or more parties, whether or not Members of MIPI. MIPI does not make any search or investigation for IPR, nor does MIPI require or request the disclosure of any IPR or claims of IPR as respects the contents of this Document or otherwise.

Questions pertaining to this document, or the terms or conditions of its provision, should be addressed to:

MIPI Alliance, Inc.
c/o IEEE-ISTO
445 Hoes Lane
Piscataway, NJ 08854
Attn: Board Secretary
Contents

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Version 2.00 – 29 November 2005 ..i

1 Overview ..5

1.1 Scope ...5

1.2 Purpose ..5

2 Terminology ..6

2.1 Definitions ...6

2.2 Abbreviations ...6

2.3 Acronyms ...7

3 References ...8

4 Display Architectures and Interface Constructions ...9

4.1 Display Architectures ..9

4.2 Display Bus Interface Constructions ...16

5 Interface Signal Description ..18

5.1 Power Supply Signals ...18

5.2 Interface Signals ..18

6 Interface I/O Cells ..21

7 Interface Functional Description ...22

7.1 Type A Interface Write and Read Cycles .. 22

7.2 Type B Interface Write and Read Cycles ..27

7.3 Type C Interface Write and Read Sequences ..30

7.4 Tearing Effect ...37

8 Interface Electrical Characteristics ...38

8.1 Electrical Characteristics ..38

9 Reset ..46

9.1 Host Input/Output Pins ..46

9.2 Display Input/Output Pins ..47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Interface Color Coding</td>
<td>48</td>
</tr>
<tr>
<td>10.1</td>
<td>Serial Interface</td>
<td>48</td>
</tr>
<tr>
<td>10.2</td>
<td>8-bit Interface</td>
<td>50</td>
</tr>
<tr>
<td>10.3</td>
<td>9-bit interface</td>
<td>55</td>
</tr>
<tr>
<td>10.4</td>
<td>16-bit Interface</td>
<td>56</td>
</tr>
<tr>
<td>11</td>
<td>Command Set</td>
<td>63</td>
</tr>
<tr>
<td>12</td>
<td>Interoperability, and Optional Capabilities</td>
<td>64</td>
</tr>
</tbody>
</table>
1 Overview

This document describes Display Bus Interface (DBI), which is used for display modules. DBI can be configured for 1, 2, 8, 9 or 16 data signals.

This document defines the interface parameters outlined below for both the host processor and display module.

- Electrical
- Timings
- Protocol examples
- Measurement methods
- Color coding
- Command set to control display behaviors

1.1 Scope

The Display Bus Interface specification defines the electrical and logical interfaces for mobile device host processors and display modules. Logical control of the display module functional blocks such as power supply, timing generator and display drivers is also within the scope of this document. The design of the functional blocks is not within the scope of this specification.

1.2 Purpose

The Display Bus Interface specification is used by manufacturers to design products that adhere to MIPI specifications for mobile device processor and display interfaces.

Implementing the DBI standard reduces the time-to-market and design cost of mobile devices by simplifying the interconnection of products from different manufacturers. In addition, adding new features such as larger or additional displays to mobile devices is simplified due to the extensible nature of the MIPI specifications.
2 Terminology

2.1 Definitions

Command: Digital information used to control display behavior and to identify the connected display module

Data: Digital image data stored in the frame memory or numerical information to define the display module behavior accompanied with a command

Display Controller: Isolated IC silicon chip or integrated functional block in the host processor to control a display module; may or may not include frame memory

Display Device: Functional device which can show image, such as Liquid Crystal Displays

Display Driver IC: IC silicon chip in a display module used to control the display device; may or may not include frame memory

Display Glass: Same as display device, coming from material name

Display Module: Functional module to show image on it, can consists of display device, display driver IC, other peripheral components and circuits and display interface

Display Panel: Same as Display Device, coming from the physical outward appearance of the display device

Frame Memory: Memory device integrated in a display driver IC or display controller in order to provide image data for refreshing the display device. Full-frame memory provides a full screen area of image data while partial-frame memory only provides memory for a portion of the screen area.

Type 1 Display Architecture: One of the defined display module architectures. In DSI, DBI, DPI, and DCS, a display module architecture in which a display module includes a display device, display driver IC, full-frame memory, registers, timing controller, non-volatile memory and control interface.

Type 2 Display Architecture: One of the defined display module architectures. In DSI, DBI, DPI, and DCS, a display module architecture in which a display module includes a display device, display driver IC, partial-frame memory, registers, timing controller, non-volatile memory, control interface and video stream interface.

Type 3 Display Architecture: One of the defined display module architectures. In DSI, DBI, DPI, and DCS, a display module architecture in which a display module includes a display device, display driver IC, registers, timing controller, non-volatile memory, control interface and video stream interface.

Type 4 Display Architecture: One of the defined display module architectures. In DSI, DBI, DPI, and DCS, a display module architecture in which a display module includes a display device, display driver IC, registers, timing controller, control lines and video stream interface.

2.2 Abbreviations

↑ Rising edge active

↓ Falling edge active
AGND Power ground

CSX Chip Select, active low

D/CX Data/Command, Command is active low

DGND Logic level ground

High-Z High Impedance

H-Sync Horizontal Synchronization

RESX Reset signal, active low

RDX Read signal

Ta Ambient Temperature

WRX Write signal

V_{DD} Power Supply

V_{DDI} Logic Level Supply

V-Sync Vertical Synchronization

2.3 Acronyms

ASIC Application Specific Integrated Circuit

CMOS Complementary Metal Oxide Semiconductor

DBI Display Bus Interface

DCS Display Command Set

DOI Dependent On Implementation

DSI Display Serial Interface

I/O Input/Output

LSB Least Significant Bit

MIPI Mobile Industry Processor Interface

MSB Most Significant Bit
3 References

[1] MIPI Alliance Standard for Display Command Set, version 0.37, October 2005

[2] MIPI Alliance Standard for Display Parallel Interface, version 0.xx, August 2005

4 Display Architectures and Interface Constructions

4.1 Display Architectures

The display module shall be based on Type 1, Type 2, Type 3 or Type 4 display architecture.

The Type 1 Display Architecture should consist of the following functional blocks:

- Display Device. Used to show the image data.
- Display Driver. May be one or more devices used to drive the display device.
- Full-frame memory. Used to hold the image data; can be integrated in the display driver.
- Registers. Used to configure the display module behavior and hold identification information; can be integrated in the display driver.
- Timing Controller. Provides timing signals to control the display device and display driver based on configuration information; can be integrated in the display driver.
- Non-volatile memory. Used to store default register and configuration values; can be integrated in the display driver.
- Control Interface. Provides the interface between the host processor and the display driver; can be integrated in the display driver.
- Display Driving Circuit. As a part of display driver, used to convert timing signals and voltages to signals appropriate to drive the display device.
- Power Supply. Used to convert system voltages to levels usable by the display device and display driver; can be integrated in the display driver.
Figure 1 Type 1 Display Architecture Block Diagram
The Type 2 Display Architecture should consist of the following functional blocks:

- **Display Device.** Used to show image data.
- **Display Driver.** May be one or more devices used to drive the display device.
- **Partial-frame memory.** Used to hold image data. Can be integrated in the display driver.
- **Registers.** Used to configure the display module behavior and hold identification information; can be integrated in the display driver.
- **Timing Controller.** Provides timing signals to control the display device and display driver based on configuration information; can be integrated in the display driver.
- **Non-volatile memory.** Used to store default register and configuration values; can be integrated in the display driver.
- **Control Interface.** Provides the interface between the host processor and the display driver; can be integrated in the display driver.
- **Display Driving Circuit.** As a part of display driver, used to convert timing signals and voltages to signals appropriate to drive the display device.
- **Power Supply.** Used to convert system voltages to levels usable by the display device and display driver; can be integrated in the display driver.
- **Video Stream Interface.** Used to receive video image data and timing signals from the host processor.
Figure 2 Type 2 Display Architecture Block Diagram
The Type 3 Display Architecture should consist of the following functional blocks:

- **Display Device.** Used to show image data.
- **Display Driver.** May be one or more devices used to drive the display device.
- **Registers.** Used to configure the display module behavior and hold identification information; can be integrated in the display driver.
- **Timing Controller.** Provides timing signals to control the display device and display driver based on configuration information; can be integrated in the display driver.
- **Non-volatile memory.** Used to store default register and configuration values; can be integrated in the display driver.
- **Control Interface.** Provides the interface between the host processor and the display driver; can be integrated in the display driver.
- **Display Driving Circuit.** As a part of display driver, used to convert timing signals and voltages to signals appropriate to drive the display device.
- **Power Supply.** Used to convert system voltages to levels usable by the display device and display driver; can be integrated in the display driver.
- **Video Stream Interface.** Used to receive video image data and timing signals from the host processor.
Figure 3 Type 3 Display Architecture Block Diagram
The Type 4 Display Architecture should consist of the following functional blocks:

- **Display Device.** Used to show image data.
- **Display Driver.** May be one or more devices used to drive the display device.
- **Timing Controller.** Provides timing signals to control the display device and display driver based on configuration information; can be integrated in the display driver.
- **Control lines.** Used to receive display behavior control information from the host processor.
- **Display Driving Circuit.** As a part of display driver, used to convert timing signals and voltages to signals appropriate to drive the display device.
- **Power Supply.** Used to convert system voltages to levels usable by the display device and display driver; can be integrated in the display driver.

![Figure 4 Type 4 Display Architecture Block Diagram](image)

In all architecture types, it is assumed the power supply is under the control of the display driver.

DBI is used for the control interfaces.

Refer to *MIPI Alliance Standard for Display Parallel Interface* [2] for the video stream interface used in type 2, 3 and 4 architectures.
4.2 Display Bus Interface Constructions

The electrical connection between the host processor and a display module consists of two blocks: power and interface. Power is supplied from either the host processor itself or another device under the control of the host to the power block of the display module. Interface blocks are used to transfer information between the host processor and a display module.

There are three types of DBI implementations, named type A, B and C as shown in Figure 5, Figure 6 and Figure 7, respectively.

![Figure 5 Type A Interface Block Diagram](image)

![Figure 6 Type B Interface Block Diagram](image)
Figure 7 Type C Interface Block Diagram
5 Interface Signal Description

5.1 Power Supply Signals

Table 1 Power Supply Signals

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD</td>
<td>Power supply</td>
<td>Power supply for display module</td>
</tr>
<tr>
<td>V_DDI</td>
<td>Logic level supply</td>
<td>Logic level supply for interface signals</td>
</tr>
<tr>
<td>AGND</td>
<td>Power Ground</td>
<td>GND for power supply</td>
</tr>
<tr>
<td>DGND</td>
<td>Logic level ground</td>
<td>GND for logic level</td>
</tr>
</tbody>
</table>

5.2 Interface Signals

5.2.1 Type A Interface

Table 2 Type A Interface Signal Description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSX</td>
<td>Chip Select</td>
<td>O</td>
<td>In Fixed E mode, host processor writes data (D[15:0], D[8:0] or D[7:0]) at falling edge, or reads at rising edge. In Clocked E mode, the display module is selected when low.</td>
</tr>
<tr>
<td>R/WX</td>
<td>Read/Write</td>
<td>O</td>
<td>Host processor reads data (D[15:0], D[8:0] or D[7:0]) when high or writes data (D[15:0], D[8:0] or D[7:0]) when low.</td>
</tr>
<tr>
<td>E</td>
<td>E clock</td>
<td>O</td>
<td>In Fixed E mode, this signal is tied high. In Clocked E mode, the host processor reads information (D[15:0], D[8:0], D[7:0]) at rising edge or writes at falling edge.</td>
</tr>
<tr>
<td>D[15:0], D[8:0], or D[7:0]</td>
<td>Information</td>
<td>I/O</td>
<td>Information signals</td>
</tr>
<tr>
<td>D/CX</td>
<td>Data/Command</td>
<td>O</td>
<td>Data is indicated when high and Command is indicated when low.</td>
</tr>
<tr>
<td>RESX</td>
<td>Reset</td>
<td>O</td>
<td>Display module is reset when low.</td>
</tr>
<tr>
<td>TE</td>
<td>Tearing Effect</td>
<td>I</td>
<td>Tearing Effect (optional).</td>
</tr>
</tbody>
</table>

Note: I/O directions are defined from the host processor perspective.
When CSX is high, the display module ignores all other interface signals.

CSX can be connected to DGND permanently on the display module without limitations.

5.2.2 Type B Interface

Table 3 Type B Interface Signal Description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSX</td>
<td>Chip Select</td>
<td>O</td>
<td>Display module is selected when low.</td>
</tr>
<tr>
<td>RDX</td>
<td>Read</td>
<td>O</td>
<td>Host processor reads information (D[15:0], D[8:0] or D[7:0]) at rising edge.</td>
</tr>
<tr>
<td>WRX</td>
<td>Write</td>
<td>O</td>
<td>Host processor writes information (D[15:0], D[8:0] or D[7:0]) at falling edge.</td>
</tr>
<tr>
<td>D[15:0], D[8:0] or D[7:0]</td>
<td>Information</td>
<td>I/O</td>
<td>Information signals</td>
</tr>
<tr>
<td>D/CX</td>
<td>Data/Command</td>
<td>O</td>
<td>Data is indicated when high and Command is indicated when low.</td>
</tr>
<tr>
<td>RESX</td>
<td>Reset</td>
<td>O</td>
<td>Display module is reset when low.</td>
</tr>
<tr>
<td>TE</td>
<td>Tearing Effect</td>
<td>I</td>
<td>Tearing Effect</td>
</tr>
</tbody>
</table>

Notes:

I/O directions are defined from the host processor perspective.

When CSX is high, the display module ignores all other interface signals.

CSX can be connected to DGND permanently on the display module without limitations.

5.2.3 Type C Interface

Table 4 Type C Interface Signal Description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSX</td>
<td>Chip Select</td>
<td>O</td>
<td>Display is selected when low.</td>
</tr>
<tr>
<td>SCL</td>
<td>Serial Clock</td>
<td>O</td>
<td>Host processor writes information (DOUT or SDA) or reads information (DIN or SDA) at rising edge</td>
</tr>
<tr>
<td>DOUT</td>
<td>Information Out</td>
<td>O</td>
<td>Information signal output from host processor</td>
</tr>
<tr>
<td>DIN</td>
<td>Information In</td>
<td>I</td>
<td>Information signal input to host processor</td>
</tr>
<tr>
<td>SDA</td>
<td>Information</td>
<td>I/O</td>
<td>Bidirectional information signal</td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
<td>I/O</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>D/CX</td>
<td>Data/Command</td>
<td>O</td>
<td>Data is indicated when high and Command is indicated when low (optional).</td>
</tr>
<tr>
<td>RESX</td>
<td>Reset</td>
<td>O</td>
<td>Display is reset when low.</td>
</tr>
</tbody>
</table>

Notes:

264 I/O directions are defined from the host perspective.

265 When CSX is high, display module ignores all other interface signals.

267 CSX can be connected to DGND permanently on the display without limitations.
6 Interface I/O Cells

The host processor and display module interface blocks shall be implemented using CMOS I/O cells for interface signals as they are described in Figure 8.

Figure 8 Interface I/O Cells
7 Interface Functional Description

7.1 Type A Interface Write and Read Cycles

7.1.1 Write Cycle

During a write cycle the host processor writes commands or data to the display module via the interface. Type A interfaces support two modes: Fixed E and Clocked E. Both modes utilize CSX, D/CX, R/WX and E signals as well as all eight (D[7:0]), nine (D[8:0]) or sixteen (D[15:0]) information signals. D/CX is driven low while a command is present on the interface and pulled high when data is on the interface.

The write cycle is described in Figure 9 and Figure 10.

![Figure 9 Type A Interface - Fixed E Mode Write Cycle](image)

Note:

1. CSX is an unsynchronized signal; it can be stopped.
2. E signal is tied high in Fixed E mode.
7.1.2 Read Cycle

During a read cycle the host processor reads data from the display module via the interface. Type A interfaces support two modes: Fixed E and Clocked E. Both modes utilize CSX, D/CX, R/WX and E signals as well as all eight (D[7:0]), nine (D[8:0]) or sixteen (D[15:0]) information signals. D/CX is driven low during the entire read cycle.

The read cycle is described in Figure 11 and Figure 12.

Copyright © 2005 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.
2. E signal is tied up high in Fixed E mode.

Figure 12 Type A Interface - Clocked E Mode Read Cycle

Note:
1. E is an unsynchronized signal; it can be stopped.
2. CSX is asserted (taken low) for the same duration as the information signals.

7.1.3 Display Read/Write Sequences

Figure 13 Type A Interface - Example Fixed E Mode Write Sequence
Figure 14 Type A Interface - Example Clocked E Mode Write Sequence
Figure 15 Type A Interface - Example Fixed E Mode Read Sequence

Figure 16 Type A Interface - Example Clocked E Mode Read Sequence
7.2 Type B Interface Write and Read Cycles

7.2.1 Write Cycle

During a write cycle the host processor sends data to the display module via the interface. The Type B interface utilizes D/CX, RDX and WRX signals as well as all eight (D[7:0]), nine (D[8:0]) or sixteen (D[15:0]) information signals. WRX is driven from high to low then pulled back to high during the write cycle. The host processor provides information during the write cycle while the display module reads the host processor information on the rising edge of WRX. D/CX is driven low while command information is on the interface and is pulled high when data is present.

Figure 17 shows a write cycle for the type B interface.

Note: WRX is an unsynchronized signal; it can be stopped.

7.2.2 Read Cycle

During a read cycle the host processor reads data from the display module via the interface. The Type B interface utilizes D/CX, RDX and WRX signals as well as all eight (D[7:0]), nine (D[8:0]) or sixteen (D[15:0]) information signals. RDX is driven from high to low then allowed to be pulled back to high during the read cycle. The display module provides information to the host processor during the read cycle while the host processor reads the display module information on the rising edge of RDX. D/CX is driven high during the read cycle.

Figure 18 shows the read cycle for the type B interface.
Note: RDX is an unsynchronized signal; it can be stopped.
7.2.3 Display Read/Write Sequences

Note: Read Data is only valid when the D/CX input is pulled high. If D/CX is driven low during read then the display information outputs will be High-Z.
7.3 Type C Interface Write and Read Sequences

7.3.1 Write Cycle and Sequence

During a write cycle the host processor sends a single bit of data to the display module via the interface. The Type C interface utilizes CSX, SCL and SDA or DOUT signals. SCL is driven from high to low then pulled back to high during the write cycle. The host processor provides information during the write cycle while the display module reads the host processor information on the rising edge of SCL.

Figure 21 shows the write cycle for the type C interface.

![Figure 21 Type C Interface Write Cycle]

Note: SCL is an unsynchronized signal; it can be stopped.

During the write sequence the host processor writes one or more bytes of information to the display module via the interface. The write sequence is initiated when CSX is driven from high to low and ends when CSX is pulled high. Each byte is either nine or sixteen write cycles in length. If the optional D/CX signal is used a byte is eight write cycles long. D/CX is driven low while command information is on the interface and is pulled high when data is present.
The type C interface write sequences are described in Figure 22, Figure 23 and Figure 24.

Note: D7 is MSB and D0 is LSB of byte.
Figure 23 Type C Interface Write Sequence – Option 2

Note: D7 is MSB and D0 is LSB of byte.
7.3.2 Read Cycle and Sequence

During a read cycle the host processor reads a single bit of data from the display module via the interface. The Type C interface utilizes CSX, SCL and SDA or DIN signals. SCL is driven from high to low then pulled back to high during the read cycle. The display module provides information during the read cycle while the host processor reads the display module information on the rising edge of SCL. D/CX is driven during the read cycle if it is used in option 3.

Figure 25 shows the read cycle for the type C interface.
The display asserts DIN or SDA line when there is a falling edge of SCL.

The host reads DIN or SDA line when there is a rising edge of SCL.

The display negates DIN or SDA line.

Figure 25 Type C Interface Read Cycle

Note: SCL is an unsynchronized signal; it can be stopped.

During the read sequence the host processor reads one or more bytes of information from the display module via the interface. The read sequence is initiated when CSX is driven from high to low and ends when CSX is pulled high. Each byte is either nine or sixteen write cycles in length. If the optional D/CX signal is used a byte is eight read cycles long. D/CX is driven low while command information is on the interface and is pulled high when data is present.

The type C interface read sequences are shown in Figure 26, Figure 27 and Figure 28.
Figure 26 Type C Interface Read Sequence – Option 1

Note: D7 is MSB and D0 is LSB of byte.
Figure 27 Type C Interface Read Sequence – Option 2

Note: D7 is MSB and D0 is LSB of byte.
7.3.3 Break and Pause of Sequences

The host processor can break a read or write sequence by pulling the CSX signal high during a command or data byte. The display module shall reset its interface so it will be ready to receive the same byte when CSX is again driven low.

The host processor can pause a read or write sequence by pulling the CSX signal high between command or data bytes. The display module shall wait for the host processor to drive CSX low before continuing the read or write sequence at the point where the sequence was paused.

7.4 Tearing Effect

The display module can use the Tearing Effect signal to provide the host processor with internal signal information such as VSYNC as shown in Figure 29 or VSYNC + HSYNC as shown in Figure 30.
8 Interface Electrical Characteristics

8.1 Electrical Characteristics

8.1.1 Absolute Maximum Ratings

Table 5 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>V_{DD}</td>
<td>DOI</td>
<td>V</td>
</tr>
<tr>
<td>Logic level supply</td>
<td>V_{DDI}</td>
<td>DOI</td>
<td>V</td>
</tr>
<tr>
<td>Logic Signal Input Voltage</td>
<td>V_I</td>
<td>DOI</td>
<td>V</td>
</tr>
<tr>
<td>Logic Signal Output Voltage</td>
<td>V_O</td>
<td>DOI</td>
<td>V</td>
</tr>
</tbody>
</table>

8.1.2 DC Characteristics

Table 6 DC Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Specification</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>V_{DD}</td>
<td>Operating Voltage</td>
<td>DOI</td>
<td>V</td>
</tr>
<tr>
<td>Logic High level input voltage</td>
<td>V_{IH}</td>
<td></td>
<td>$0.7V_{DDI}$</td>
<td>V_{DDI}</td>
</tr>
<tr>
<td>Logic Low level input voltage</td>
<td>V_{IL}</td>
<td></td>
<td>0.0</td>
<td>0.3V_{DDI}</td>
</tr>
<tr>
<td>Logic High level output voltage</td>
<td>V_{OH}</td>
<td>$I_{OUT} = -1$ mA</td>
<td>0.8V_{DDI}</td>
<td>V_{DDI}</td>
</tr>
<tr>
<td>Logic Low level output voltage</td>
<td>V_{OL}</td>
<td>$I_{OUT} = +1$ mA</td>
<td>0.0</td>
<td>0.2V_{DDI}</td>
</tr>
<tr>
<td>Logic High level input current</td>
<td>I_{IH}</td>
<td>Except D[15:0], D[8:0]</td>
<td>10</td>
<td>uA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or D[7:0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{IHD}</td>
<td>D[15:0], D[8:0] or D[7:0]</td>
<td>10</td>
<td>uA</td>
</tr>
<tr>
<td>Logic Low level input current</td>
<td>I_{IL}</td>
<td>Except D[15:0], D[8:0]</td>
<td>-10</td>
<td>uA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or D[7:0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{ILD}</td>
<td>D[15:0], D[8:0] or D[7:0]</td>
<td>-10</td>
<td>uA</td>
</tr>
</tbody>
</table>

Note: $Ta = -30$ to 70 °C
Table 7 Logic High level input voltage classification

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Class</th>
<th>Specification</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>min</td>
<td>typ</td>
</tr>
<tr>
<td>Logic High level input voltage</td>
<td>V_DDI</td>
<td>1</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>2.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Note: Ta = -30 to 70 °C

8.1.3 AC Characteristics

Figure 31 AC Characteristics, Type A Interface, Fixed E Mode
Figure 32 AC Characteristics, Type A Interface, Clocked E Mode

Table 8 AC Characteristic -- Type A Interface

<table>
<thead>
<tr>
<th>Signal</th>
<th>Symbol</th>
<th>Parameter</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/WX or D/CX</td>
<td>(t_{as})</td>
<td>Address setup time</td>
<td>(T)</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t_{ah})</td>
<td>Address hold time (Write/Read)</td>
<td>(T)</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CSX or E</td>
<td>(t_{cycle})</td>
<td>System clock cycle time</td>
<td>(5xT)</td>
<td>(79xT)</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>D[15:0], D[8:0], or D[7:0]</td>
<td>(t_{DS})</td>
<td>Data setup time</td>
<td>15</td>
<td>-</td>
<td>ns</td>
<td>For maximum (C_L=30\text{pF})</td>
</tr>
<tr>
<td></td>
<td>(t_{DH})</td>
<td>Data hold time</td>
<td>25</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t_{ACC})</td>
<td>Data access time</td>
<td>10</td>
<td>-</td>
<td>ns</td>
<td>For minimum (C_L=8\text{pF})</td>
</tr>
<tr>
<td></td>
<td>(t_{OH})</td>
<td>Output hold time</td>
<td>10</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. \(Ta = -30 \text{ to } 70 \, ^\circ \text{C}, \, V_{DDH} \) range: according to Logic High level input voltage classification, \(GND = 0\text{V}, \, T = 10 \pm 0.5 \, \text{ns} \)
2. Does not include signal rise and fall times.
Figure 33 AC Characteristics, Type B Interface
Table 9 AC Characteristics -- Type B Interface

<table>
<thead>
<tr>
<th>Signal</th>
<th>Symbol</th>
<th>Parameter Description</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D/CX</td>
<td>t_{as}</td>
<td>Address setup time</td>
<td>T</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_{ahl}</td>
<td>Address hold time (Write/Read)</td>
<td>T</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CSX</td>
<td>t_{cs}</td>
<td>Chip Select setup time (Write)</td>
<td>2xT</td>
<td>-</td>
<td>ns</td>
<td>(2xT, 3xT, ..., 16xT)</td>
</tr>
<tr>
<td></td>
<td>t_{csr}</td>
<td>Chip Select setup time (Read)</td>
<td>2xT</td>
<td>-</td>
<td>ns</td>
<td>(2xT, 3xT, ..., 16xT)</td>
</tr>
<tr>
<td></td>
<td>t_{csf}</td>
<td>Chip Select Wait time (Write/Read)</td>
<td>20</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>WRX</td>
<td>t_{wc}</td>
<td>Write cycle</td>
<td>5xT</td>
<td>79xT</td>
<td>ns</td>
<td>(5xT, 6xT, ..., 79xT)</td>
</tr>
<tr>
<td></td>
<td>t_{wch}</td>
<td>Write Control pulse H duration</td>
<td>3xT</td>
<td>63xT</td>
<td>ns</td>
<td>(3xT, 6xT, ..., 63xT)</td>
</tr>
<tr>
<td></td>
<td>t_{wcl}</td>
<td>Write Control pulse L duration</td>
<td>2xT</td>
<td>16xT</td>
<td>ns</td>
<td>(2xT, 3xT, ..., 16xT)</td>
</tr>
<tr>
<td>RDX</td>
<td>t_{rc}</td>
<td>Read cycle</td>
<td>5xT</td>
<td>79xT</td>
<td>ns</td>
<td>(5xT, 6xT, ..., 79xT)</td>
</tr>
<tr>
<td></td>
<td>t_{rth}</td>
<td>Read Control pulse H duration</td>
<td>3xT</td>
<td>63xT</td>
<td>ns</td>
<td>(3xT, 6xT, ..., 63xT)</td>
</tr>
<tr>
<td></td>
<td>t_{rdl}</td>
<td>Read Control pulse L duration</td>
<td>2xT</td>
<td>16xT</td>
<td>ns</td>
<td>(2xT, 3xT, ..., 16xT)</td>
</tr>
<tr>
<td>D[15:0], D[8:0], or D[7:0]</td>
<td>t_{wds}</td>
<td>Write data setup time</td>
<td>15</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_{wdh}</td>
<td>Write data hold time</td>
<td>25</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_{rac}</td>
<td>Read access time</td>
<td>10</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_{rod}</td>
<td>Read output disable time</td>
<td>10</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

Note:

1. Ta = -30 to 70 °C, V_{DD} range: according to Logic High level input voltage classification, GND = 0V, T = 10 ± 0.5 ns
2. Does not include signal rise and fall times.

Copyright © 2005 MIPI Alliance, Inc. All rights reserved.
MIPI Alliance Member Confidential.
Figure 34 AC Characteristics, Type C Interface

Table 10 AC Characteristics -- Type C Interface

<table>
<thead>
<tr>
<th>Signal</th>
<th>Symbol</th>
<th>Parameter</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSX</td>
<td>tcss</td>
<td>Chip Select setup time (Write)</td>
<td>4xT</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tcsh</td>
<td>Chip Select setup time (Read)</td>
<td>4xT</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>D/CX (optional)</td>
<td>tas</td>
<td>Address setup time</td>
<td>T</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tah</td>
<td>Address hold time (Write/Read)</td>
<td>T</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCL(write)</td>
<td>twc</td>
<td>Write cycle</td>
<td>10xT</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>twrh</td>
<td>SCL H duration (write)</td>
<td>4xT</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>twrl</td>
<td>SCL L duration (write)</td>
<td>4xT</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>SCL(read)</td>
<td>trc</td>
<td>Read cycle</td>
<td>15xT</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trdh</td>
<td>SCL H duration (read)</td>
<td>6xT</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trdl</td>
<td>SCL L duration (read)</td>
<td>6xT</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DOUT or SDA(write)</td>
<td>tds</td>
<td>Data setup time</td>
<td>3xT</td>
<td>-</td>
<td>ns</td>
<td>For maximum $C_L=30\text{pF}$</td>
</tr>
<tr>
<td></td>
<td>tdh</td>
<td>Data hold time</td>
<td>3xT</td>
<td>-</td>
<td>ns</td>
<td>For minimum $C_L=8\text{pF}$</td>
</tr>
<tr>
<td>DIN or SDA(read)</td>
<td>tacc</td>
<td>Access time</td>
<td>10</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tod</td>
<td>Output disable time</td>
<td>T</td>
<td>5xT</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
1. $T_a = -30$ to $70 \, ^\circ C$, V_{DDI} range: according to Logic High level input voltage classification, GND = 0V, $T = 10 \pm 0.5$ ns

2. Does not include signal rise and fall times

Table 11 Example TE Timing Values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>min</th>
<th>max</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{vd}</td>
<td>Vertical Timing Low Duration</td>
<td>DOI</td>
<td>-</td>
<td>ms</td>
<td>DOI</td>
</tr>
<tr>
<td>t_{v}</td>
<td>Vertical Timing High Duration</td>
<td>1000</td>
<td>-</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>t_{hd}</td>
<td>Horizontal Timing Low Duration</td>
<td>DOI</td>
<td>-</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>t_{hd}</td>
<td>Horizontal Timing High Duration</td>
<td>24</td>
<td>500</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

Note: $T_a = -30$ to $70 \, ^\circ C$, V_{DDI} range: according to Logic High level input voltage classification, GND = 0V

Figure 36 Signal Rise and Fall Times, Host to Display Module ($t_r \leq 15 \, ns$, $t_f \leq 15 \, ns$)

Figure 37 Signal Rise and Fall Times, Display Module to Host ($t_r \leq 15 \, ns$, $t_f \leq 15 \, ns$)
Figure 38 Example Reset Timings

Table 12 Example Reset Timing Values

<table>
<thead>
<tr>
<th>Signal</th>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESX</td>
<td>t_{RW}</td>
<td>Reset pulse duration</td>
<td>10</td>
<td>50</td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>t_{RT}</td>
<td>Reset cancel</td>
<td>5</td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

Notes:
1. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to Table 13.
2. Spike Rejection also applies during a valid reset pulse as shown below:

Table 13 RESX Pulse Conditions

<table>
<thead>
<tr>
<th>RESX Pulse</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorter than 5μs</td>
<td>Reset Rejected</td>
</tr>
<tr>
<td>Longer than 9μs</td>
<td>Reset</td>
</tr>
<tr>
<td>Between 5μs and 9μs</td>
<td>Reset starts</td>
</tr>
</tbody>
</table>

Figure 39 RESX Input Spike Rejection
9 Reset

9.1 Host Input/Output Pins

9.1.1 Input Pins, I/O Pins

Table 14 Host Input and I/O Pin Status Corresponding to Reset and Power On/Off Process

<table>
<thead>
<tr>
<th>Signal Line</th>
<th>During Display Power-on Process</th>
<th>After Powered On</th>
<th>After Hardware Reset</th>
<th>During Display Module Power Off Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE Line</td>
<td>Input Invalid</td>
<td>Input Valid</td>
<td>Input Valid</td>
<td>Input Invalid</td>
</tr>
<tr>
<td>D[15:0], D[8:0], D[7:0], SDA (input) or DIN</td>
<td>Input Invalid</td>
<td>Input Valid</td>
<td>Input Valid</td>
<td>Input Invalid</td>
</tr>
</tbody>
</table>

9.1.2 Output Pins

Table 15 Host Output Pin Status Corresponding to Reset and Power On/Off Process

<table>
<thead>
<tr>
<th>Signal Line</th>
<th>During Display Power-on Process</th>
<th>After Powered On</th>
<th>After Hardware Reset</th>
<th>During Display Module Power Off Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESX</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>CSX</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>D/CX</td>
<td>High or Low</td>
<td>High or Low</td>
<td>High or Low</td>
<td>High or Low</td>
</tr>
<tr>
<td>R/WX</td>
<td>High or Low</td>
<td>High or Low</td>
<td>High or Low</td>
<td>High or Low</td>
</tr>
<tr>
<td>E</td>
<td>High or Low</td>
<td>High or Low</td>
<td>High or Low</td>
<td>High or Low</td>
</tr>
<tr>
<td>WRX</td>
<td>High or Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>RDX</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>SCL</td>
<td>High or Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>D[15:0], D[8:0], D[7:0], SDA (output) or DOUT</td>
<td>High-Z (Inactive) or Low</td>
<td>High-Z (Inactive) or Low</td>
<td>High-Z (Inactive) or Low</td>
<td>High-Z (Inactive) or Low</td>
</tr>
</tbody>
</table>
9.2 Display Input/Output Pins

9.2.1 Output Pins, I/O Pins

Table 16 Display Output and I/O pin Status After Reset and Power On/Off Process

<table>
<thead>
<tr>
<th>Signal Line</th>
<th>After Powered On</th>
<th>After Hardware Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE Line</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>D[15:0], D[8:0], D[7:0], SDA (output) or DIN</td>
<td>High-Z (Inactive)</td>
<td>High-Z (Inactive)</td>
</tr>
</tbody>
</table>

Note: There will be no output from D[15:0] or D[7:0] during Power On/Off sequences and Hardware Reset.

9.2.2 Input Pins

Table 17 Display Input Pin Status Corresponding to Reset and Power On/Off Process

<table>
<thead>
<tr>
<th>Signal Line</th>
<th>During Display Power On Process</th>
<th>After Powered On</th>
<th>After Hardware Reset</th>
<th>During Display Power Off Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESX</td>
<td>DOI</td>
<td>Input valid</td>
<td>Input valid</td>
<td>DOI</td>
</tr>
<tr>
<td>CSX</td>
<td>Input invalid</td>
<td>Input valid</td>
<td>Input valid</td>
<td>Input invalid</td>
</tr>
<tr>
<td>D/CX</td>
<td>Input invalid</td>
<td>Input valid</td>
<td>Input valid</td>
<td>Input invalid</td>
</tr>
<tr>
<td>R/WX</td>
<td>Input invalid</td>
<td>Input valid</td>
<td>Input valid</td>
<td>Input invalid</td>
</tr>
<tr>
<td>E</td>
<td>Input invalid</td>
<td>Input valid</td>
<td>Input valid</td>
<td>Input invalid</td>
</tr>
<tr>
<td>WRX</td>
<td>Input invalid</td>
<td>Input valid</td>
<td>Input valid</td>
<td>Input invalid</td>
</tr>
<tr>
<td>RDX</td>
<td>Input invalid</td>
<td>Input valid</td>
<td>Input valid</td>
<td>Input invalid</td>
</tr>
<tr>
<td>SCL</td>
<td>Input invalid</td>
<td>Input valid</td>
<td>Input valid</td>
<td>Input invalid</td>
</tr>
<tr>
<td>D[15:0], D[8:0], D[7:0], SDA (input) or DOUT</td>
<td>Input invalid</td>
<td>Input valid</td>
<td>Input valid</td>
<td>Input invalid</td>
</tr>
</tbody>
</table>
10 Interface Color Coding

Color coding uses a red [R], green [G] and blue [B] additive color mixing method. R, G and B are used for each color data index in the following sections.

10.1 Serial Interface

10.1.1 3-bits/pixel (R 1-bit, G 1-bit, B 1-bit), Eight Colors - Option 1

Figure 40 3-bits/pixel (R 1-bit, G 1-bit, B 1-bit), Eight Colors - Option 1
10.1.2 3-bit/pixel (R 1-bit, G 1-bit, B 1-bit), Eight Colors – Option 2

![Diagram](image)

Figure 41 3-bit/pixel (R 1-bit, G 1-bit, B 1-bit), Eight Colors - Option 2
10.2 8-bit Interface

10.2.1 8-bits/pixel (R 3-bit, G 3-bit, B 2-bit), 256 Colors

Note: The Data order is as follows, MSB = D7, LSB = D0. Picture Data is MSB = Bit2, LSB = Bit0 for Red and Green data, MSB = Bit1, LSB = Bit0 for Blue data.
10.2.2 12-bits/pixel (R 4-bit, G 4-bit, B 4-bit), 4,096 Colors

![Diagram of 12-bits/pixel (R 4-bit, G 4-bit, B 4-bit), 4,096 Colors]

Note: The Data order is as follows, MSB = D7, LSB = D0. Picture Data is MSB = Bit3, LSB = Bit0 for Red, Green, and Blue data.
10.2.3 16-bits/pixel (R 5-bit, G 6-bit, B 5-bit), 65,536 Colors

D/CX

CSX of Type A
or
WRX of Type B

E of Type A

Figure 44 16-bits/pixel (R 5-bit, G 6-bit, B 5-bit), 65,536 Colors

Note: The Data order is as follows, MSB = D7, LSB = D0. Picture Data is MSB = Bit5, LSB = Bit0 for Green data, MSB = Bit4, LSB = Bit0 for Red and Blue data.
10.2.4 18-bits/pixel (R 6-bit, G 6-bit, B 6-bit), 262,144 Colors

Figure 45 18-bits/pixel (R 6-bit, G 6-bit, B 6-bit), 262,144 Colors

Note: The Data order is as follows, MSB = D7, LSB = D0. Picture Data is MSB = Bit5, LSB = Bit0 for Red, Green, and Blue data.
10.2.5 24-bits/pixel (R 8-bit, G 8-bit, B 8-bit), 16,777,216 Colors

Figure 46 24-bits/pixel (R 8-bit, G 8-bit, B 8-bit), 16,777,216 Colors

Note: The Data order is as follows, MSB = D7, LSB = D0. Picture Data is MSB = Bit7, LSB = Bit0 for Red, Green, and Blue data.
10.3 9-bit interface

10.3.1 18-bits/pixel (R 6-bit, G 6-bit, B 6-bit), 262,144 Colors

Note: The Data order is as follows, MSB = D8, LSB = D0. Picture Data is MSB = Bit5, LSB = Bit0 for Red, Green, and Blue data.
10.4 16-bit Interface

10.4.1 8-bits/pixel (R 3-bit, G 3-bit, B 2-bit), 256 Colors

Figure 48 8-bits/pixel (R 3-bit, G 3-bit, B 2-bit), 256 Colors

Note: The data order is as follows: MSB = D15, LSB = D0 and image data is MSB = Bit2, LSB = Bit0 for Red and Green data, and MSB = Bit1, LSB = Bit0 for Blue data.
10.4.2 12-bits/pixel (R 4-bit, G 4-bit, B 4-bit), 4,096 Colors

Figure 49 12-bits/pixel (R 4-bit, G 4-bit, B 4-bit), 4,096 Colors

Note: The Data order is as follows, MSB = D15, LSB = D0 and image data is MSB = Bit3, LSB = Bit0 for Red, Green, and Blue data.
16-bits/pixel (R 5-bit, G 6-bit, B 5-bit), 65,536 Colors

Figure 50 16-bits/pixel (R 5-bit, G 6-bit, B 5-bit), 65,536 Colors

Note: The Data order is as follows, MSB = D15, LSB = D0 and image data is MSB = Bit5, LSB = Bit0 for Green data and MSB = Bit4, LSB = Bit0 for Red and Blue data.
10.4.4 18-bits/pixel (R 6-bit, G 6-bit, B 6-bit), 262,144 Colors - Option 1

Figure 51 18-bits/pixel (R 6-bit, G 6-bit, B 6-bit), 262,144 Colors

Note: The Data order is as follows, MSB = D15, LSB = D0 and image data is MSB = Bit5, LSB = Bit0 for Red, Green, and Blue data.
10.4.5 18-bits/pixel (R 6-bit, G 6-bit, B 6-bit), 262,144 Colors - Option 2

Figure 52 18-bits/pixel (R 6-bit, G 6-bit, B 6-bit), 262,144 Colors

Note: The Data order is as follows, MSB = D15, LSB = D0 and image data is MSB = Bit5, LSB = Bit0 for Red, Green, and Blue data.
10.4.6 24-bits/pixel (R 8-bit, G 8-bit, B 8-bit), 16,777,216 Colors - Option 1

Figure 53 24-bits/pixel (R 8-bit, G 8-bit, B 8-bit), 16,777,216 Colors

Note: The Data order is as follows, MSB = D15, LSB = D0 and image data is MSB = Bit7, LSB = Bit0 for Red, Green, and Blue data.
10.4.7 24-bits/pixel (R 8-bit, G 8-bit, B 8-bit), 16,777,216 Colors - Option 2

Figure 54 24-bits/pixel (R 8-bit, G 8-bit, B 8-bit), 16,777,216 Colors

Note: The Data order is as follows, MSB = D15, LSB = D0 and image data is MSB = Bit7, LSB = Bit0 for red, Green, and Blue data.
11 Command Set

See the MIPI Alliance Standard for Display Command Set for a description of the commands in order to control the display module through DBI.
12 Interoperability, and Optional Capabilities

This section describes interoperability requirements between different host processors and displays in DBI application. There are a number of categories of potential differences or attributes that must be considered to ensure interoperability between a host processor and a display module in DBI usage.

1. DBI implementation Types A, B and C

Each host processor and display module shall implement one or more of Type A, B or C interfaces.

2. TE support in Type A implementations

Each host processor or display module may support TE when the Type A interface is implemented.

3. Type C option 1, 2 and 3 as specified in section 4.

Each host processor and display module shall implement one or more options of Option 1, 2 and 3 when it implements a type C interface.

4. Logic High level input voltage classification

Each host processor and display module shall support one or more voltage classification of Class 1, 2, 3 or 4.

5. Interface color coding

Each host processor shall support one or more color coding scheme of 8-, 12-, 16-, 18- or 24-bits per pixel when a Type 1 architecture is implemented.

Each display module shall support one or more color coding scheme of 8-, 12-, 16-, 18- or 24-bits per pixel, up to its native number of colors, when a Type 1 architecture is implemented.

Each host processor and display module shall support 3-bits per pixel when a Type 2 or 3 architecture is implemented.

6. Bus width option Type A and Type B

Each host processor and display module shall support one or more bus width options of 8-, 9- and 16-bits.